ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters

نویسندگان

  • Jia-Chun Lin
  • Ingrid Chieh Yu
  • Einar Broch Johnsen
  • Ming-Chang Lee
چکیده

In cloud computing, software which does not flexibly adapt to deployment decisions either wastes operational resources or requires reengineering, both of which may significantly increase costs. However, this could be avoided by analyzing deployment decisions already during the design phase of the software development. Real-Time ABS is a formal language for executable modeling of deployed virtualized software. Using Real-Time ABS, this paper develops a generic framework called ABS-YARN for YARN, which is the next generation of the Hadoop cloud computing platform with a state-of-the-art resource negotiator. We show how ABS-YARN can be used for prototyping YARN and for modeling job execution, allowing users to rapidly make deployment decisions at the modeling level and reduce unnecessary costs. To validate the modeling framework, we show strong correlations between our model-based analyses and a real YARN cluster in different scenarios with benchmarks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MPJ Express Meets YARN: Towards Java HPC on Hadoop Systems

Many organizations—including academic, research, commercial institutions—have invested heavily in setting up High Performance Computing (HPC) facilities for running computational science applications. On the other hand, the Apache Hadoop software—after emerging in 2005— has become a popular, reliable, and scalable open-source framework for processing large-scale data (Big Data). Realizing the i...

متن کامل

Cluster management system design for big data infrastructures

ION OF HETEROGENEITY YARN creates containers on each machine based on the total memory and the number of CPU cores. If there are two machines with different memory size, then they will have different numbers of containers. In other words, unlike Hadoop, YARN takes resource heterogeneity into account, in the case of memory. However, YARN still does not consider heterogeneity in other resource ch...

متن کامل

Comparing AWS Deployments Using Model-Based Predictions

Cloud computing provides on-demand resource provisioning for scalable applications with a pay-as-you-go pricing model. However, the cost-efficient use of virtual resources requires the application to exploit the available resources efficiently. Will an application perform equally well on fewer or cheaper resources? Will the application successfully finish on these resources? We have previously ...

متن کامل

Survey on Hadoop and Introduction to YARN

Big Data, the analysis of large quantities of data to gain new insight has become a ubiquitous phrase in recent years. Day by day the data is growing at a staggering rate. One of the efficient technologies that deal with the Big Data is Hadoop, which will be discussed in this paper. Hadoop, for processing large data volume jobs uses MapReduce programming model. Hadoop makes use of different sch...

متن کامل

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016